Introduction to Linear Models and Regression

Full Marks: 30 Time : 2.5 hrs

Answer question no. 1 and from the rest, as many as you want, but the maximum you can score is 30.

1. Consider the following summary statistics as obtained from a dataset with three variables x₁, x₂, x₃.

 $\overline{x_1} = 68$, $\overline{x_2} = 70$, $\overline{x_3} = 74$, $s_1^2 = 100$, $s_2^2 = 25$, $s_3^2 = 81$, $r_{12} = 0.6$, $r_{13} = 0.7$, $r_{23} = 0.65$.

- i) Construct the regression equation for x_1 on x_2 and x_3 .
- ii) Compute the multiple correlation coefficient of x₁ on x₂ and x₃
- iii) Compute the partial correlation coefficient between x₁ and x₃.
- iv) Give your comments. 3+3+3+3= 12
- 2. Show that if in a p-variate distribution, all the pair-wise correlations are equal to ρ , then $\geq -\frac{1}{p-1}$. (8)
- 3. If $X \sim N_q$ (0, I_p) and P_1 is a m X_p matrix such that, $P_1P_1' = I_m$, then find the distributions of
 - i) $\mathbf{Z} = P_1 \mathbf{X}$
 - ii) $\mathbf{U} = \frac{1}{\sigma^2} \left(\mathbf{X}' \mathbf{X} \mathbf{Z}' \mathbf{Z} \right).$
 - iii) Show that **Z** and **U** are mutually independent.

(3+3+2)

- Let X₁, X₂, ..., X_k be independent Poisson variables with parameters λ₁, λ₂, ..., λ_k respectively. Show that the conditional distribution of the sum of X₁, X₂, ..., X_{k-1} given X₁ + X₂ + ...+ X_k = n follows multinomial distribution. (6)
- 5. Prove that under a multiple linear regression set-up, the regressed values of the response variable are independent of the error in regression. (6)